Dissecting the FEAST algorithm for generalized eigenproblems

نویسندگان

  • Lukas Krämer
  • Edoardo Di Napoli
  • Martin Galgon
  • Bruno Lang
  • Paolo Bientinesi
چکیده

We analyze the FEAST method for computing selected eigenvalues and eigenvectors of large sparse matrix pencils. After establishing the close connection between FEAST and the well-known Rayleigh–Ritz method, we identify several critical issues that influence convergence and accuracy of the solver: the choice of the starting vector space, the stopping criterion, how the inner linear systems impact the quality of the solution, and the use of FEAST for computing eigenpairs from multiple intervals. We complement the study with numerical examples, and hint at possible improvements to overcome the existing problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FEAST Eigensolver for non-Hermitian Problems

A detailed new upgrade of the FEAST eigensolver targeting non-Hermitian eigenvalue problems is presented and thoroughly discussed. It aims at broadening the class of eigenproblems that can be addressed within the framework of the FEAST algorithm. The algorithm is ideally suited for computing selected interior eigenvalues and their associated right/left bi-orthogonal eigenvectors, located within...

متن کامل

Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver

The FEAST method for solving large sparse eigenproblems is equivalent to subspace iteration with an approximate spectral projector and implicit orthogonalization. This relation allows to characterize the convergence of this method in terms of the error of a certain rational approximant to an indicator function. We propose improved rational approximants leading to FEAST variants with faster conv...

متن کامل

A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems

An \industrial strength" algorithm for solving sparse symmetric generalized eigenproblems is described. The algorithm has its foundations in known techniques in solving sparse symmetric eigenproblems, notably the spectral transformation of Ericsson and Ruhe and the block Lanczos algorithm. However, the combination of these two techniques is not trivial; there are many pitfalls awaiting the unwa...

متن کامل

Generalized block Lanczos methods for large unsymmetric eigenproblems

Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error...

متن کامل

Specialized Spectral Division Algorithms for Generalized Eigenproblems Via the Inverse-Free Iteration

We present two implementations of the inverse-free iteration for spectral division that reduce the computational cost of the traditional algorithm. One of the implementations is mainly composed of efficient BLAS-3 operations, and can be employed for spectral division of largescale generalized eigenproblems on current computer architectures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 244  شماره 

صفحات  -

تاریخ انتشار 2013